Definisi
Definisi:
Sebuah model yang menggambarkan hubungan antara risiko dan return yang
diharapkann, model ini digunakan dalam penilaian harga sekuritas (A model that
describes the relationship between risk and expected return and that is used in
the pricing of risky securities) (Investopedia,
http://www.investopedia.com/terms/c/capm.asp)
Model
CAPM diperkenalkan oleh Treynor, Sharpe dan Litner. Model CAPM merupakan
pengembangan teori portofolio yang dikemukan oleh Markowitz dengan
memperkenalkan istilah baru yaitu risiko sistematik (systematic risk) dan
risiko spesifik/risiko tidak sistematik (spesific risk /unsystematic risk).
Pada tahun 1990, William Sharpe memperoleh nobel ekonomi atas teori pembentukan
harga aset keuangan yang kemudian disebut Capital Asset Pricing Model (CAPM)
Bodie
et al. (2005) menjelaskan bahwa Capital Asset Pricing Model (CAPM) merupakan
hasil utama dari ekonomi keuangan modern.Capital Asset Pricing Model (CAPM)
memberikan prediksi yang tepat antara hubungan risiko sebuah aset dan tingkat
harapan pengembalian (expected return). Walaupun Capital Asset Pricing Model
belum dapat dibuktikan secara empiris, Capital Asset Pricing Model sudah luas
digunakan karena Capital Asset Pricing Model akurasi yang cukup pada aplikasi
penting.
Capital
Asset Pricing Model mengasumsikan bahwa para investor adalah perencana pada
suatu periode tunggal yang memiliki persepsi yang sama mengenai keadaan pasar
dan mencari mean-variance dari portofolio yang optimal. Capital Asset Pricing
Model juga mengasumsikan bahwa pasar saham yang ideal adalah pasar saham yang
besar, dan para investor adalah para price-takers, tidak ada pajak maupun biaya
transaksi, semua aset dapat diperdagangkan secara umum, dan para investor dapat
meminjam maupun meminjamkan pada jumlah yang tidak terbatas pada tingkat suku
bunga tetap yang tidak berisiko (fixed risk free rate). Dengan asumsi ini,
semua investor memiliki portofolio yang risikonya identik.
Capital
Asset Pricing Model menyatakan bahwa dalam keadaan ekuilibrium, portofolio
pasar adalah tangensial dari rata-rata varians portofolio. Sehingga strategi
yang efisien adalah passive strategy. Capital Asset Pricing Model berimplikasi
bahwa premium risiko dari sembarang aset individu atau portofolio adalah hasil
kali dari risk premium pada portofolio pasar dan koefisien beta.
Risiko dan Return
Keinginan
utama dari investor adalah meminimalkan risiko dan meningkatkan perolehan
(minimize risk and maximize return). Asumsi umum bahwa investor individu yang
rasional adalah seorang yang tidak menyukai risiko (risk aversive), sehingga
investasi yang berisiko harus dapat menawarkan tingkat perolehan yang tinggi
(higher rates of return), oleh karena itu investor sangat membutuhkan informasi
mengenai risiko dan pengembalian yang diinginkan.
Risiko
investasi yang dihadapi oleh investor (Rose, Peter S., dan Marquis, Milton H.
2006. Money and Capital Markets, Ninth Edition, p 277-280):
1. Market Risk (risiko pasar), sering disebut juga sebagai interest rate risk, nilai investasi akan menjadi turun ketika suku bunga meningkat mengakibatkan pemilik investasi mengalami capital loss.
2. Reinvestment risk, risiko yang disebabkan sebuah aset akan memiliki yield yang lebih sedikit pada beberapa waktu di masa yang akan datang.
3. Default risk. Risiko apabila penerbit aset gagal membayar bunga atau bahkan pokok aset.
4. Inflation risk. Risiko menurunya nilai riil aset karena inflasi.
5. Currency risk. Risiko menurunnya nilai aset karena penurunan nilai tukar mata uang yang dipakai oleh aset.
6. Political risk. Risiko menurunya nilai aset karena perubahan dalam peraturan atau hukum karena perubahan kebijakan pemerintah atau perubahan penguasa.
1. Market Risk (risiko pasar), sering disebut juga sebagai interest rate risk, nilai investasi akan menjadi turun ketika suku bunga meningkat mengakibatkan pemilik investasi mengalami capital loss.
2. Reinvestment risk, risiko yang disebabkan sebuah aset akan memiliki yield yang lebih sedikit pada beberapa waktu di masa yang akan datang.
3. Default risk. Risiko apabila penerbit aset gagal membayar bunga atau bahkan pokok aset.
4. Inflation risk. Risiko menurunya nilai riil aset karena inflasi.
5. Currency risk. Risiko menurunnya nilai aset karena penurunan nilai tukar mata uang yang dipakai oleh aset.
6. Political risk. Risiko menurunya nilai aset karena perubahan dalam peraturan atau hukum karena perubahan kebijakan pemerintah atau perubahan penguasa.
Suku bunga bank sentral tentunya
masih berpotensi memiliki semua risiko, akan tetapi diasumsikan negara tidak
mungkin gagal membayar (walaupun ada juga kemungkinannya), oleh karena itu
biasanya return dari risk free aset (Rf) digunakan suku bunga bank sentral.
Capital
Asset Pricing Model (CAPM) mencoba untuk menjelaskan hubungan antara risk dan
return. Dalam penilaian mengenai risiko biasanya saham biasa digolongkan
sebagai investasi yang berisiko. Risiko sendiri berarti kemungkinan
penyimpangan perolehan aktual dari perolehan yang diharapkan (possibility),
sedangkan derajat risiko (degree of risk) adalah jumlah dari kemungkinan
fluktuasi (amount of potential fluctuation).
Saham
berisiko dapat dikombinasi dalam sebuah portfolio menjadi investasi yang lebih
rendah risiko daripada saham biasa tunggal. Diversifikasi akan mengurangi
risiko sistematis (systematic risk), tetapi tidak dapat mengurangi risiko yang
tidak sistematis (unsystematic risk). Unsystematic risk adalah bagian dari
risiko yang tidak umum dalam sebuah perusahaan yang dapat dipisahkan.
Systematic risks adalah bagian yang tidak dapat dipisahkan yang berhubungan
dengan seluruh pergerakan pasar saham dan tidak dapat dihindari.
Informasi
keuangan mengenai sebuah perusahaan dapat membantu dalam menentukan keputusan
investasi. Investor biasanya menghindari risiko, investor menginginkan
perolehan tambahan (additional returns) untuk menanggung risiko tambahan
(additional risks). Oleh karena itu saham berisiko tinggi (High-risk
securities) harus mempunyai harga yang menghasilkan perolehan lebih tinggi
daripada perolehan yang diharapkan dari saham berisiko lebih rendah.
Persamaan CAPM
Persamaan
risiko dan perolehan (Equation Risk and Return) adalah :
Rs
= Rf + Rp
Rs
= Expected Return on a given risky security
Rf
= Risk-free rate
Rp
= Risk premium
Bila
nilai β = 1 artinya adanya hubungan yang sempurna dengan kinerja seluruh pasar
seperti yang diukur indek pasar (market index), contohnya nilai yang diukur
oleh Dow-Jones Industrials dan Standard and Poor’s 500-stock-index. Hubungan
ini dapat digambarkan dalam contoh pada gambar.
β
adalah ukuran dari hubungan paralel dari sebuah saham biasa dengan seluruh tren
dalam pasar saham.
Bila
β > 1.00 artinya saham cenderung naik dan turun lebih tinggi daripada pasar.
β
< 1.00 artinya saham cenderung naik dan turun lebih rendah daripada indek
pasar secara umum (general market index).
Perubahan persamaan risiko dan
perolehan (Equation Risk and Return) dengan memasukan faktor β dinyatakan
sebagai:
Rs = Rf + βs (Rm – Rf)
Rs = Expected Return on a given
risky security
Rf = Risk-free rate
Rm = Expected return on the stock
market as a whole
βs = Stock’s beta, yang dihitung
berdasarkan waktu tertentu
CAPM bertahan bahwa harga saham
tidak akan dipengaruhi oleh unsystematic risk, dan saham yang menawarkan risiko
yang relatif lebih tinggi (higher βs) akan dihargai relatif lebih daripada
saham yang menawarkan risiko lebih rendah (lower βs). Riset empiris mendukung
argumen mengenai βs sebagai prediktor yang baik untuk memprediksi nilai saham
di masa yang akan datang (future stock prices).
CAPM dikritik sebagai penyebab
masalah kompetisi di Amerika Serikat. Manajer di sebuah perusahaan di Amerika
Serikat yang menggunakan CAPM terpaksa membuat investasi yang aman dalam jangka
pendek dan perolehannya dapat diprediksi dalam jangka pendek daripada investasi
yang aman dan perolehan dalam jangka panjang. Para peneliti telah menggunakan
CAPM untuk menguji hipotesa yang berhubungan dengan hipotesa pasar efisien.
Markowitz
dan Market Model
William Sharpe dalam membangun model
CAPM diilhami dari teori portofolio yang diajukan oleh Harry Markowits.
Markowitz mengusulkan sebuah model untuk menjelaskan korelasi diantara return
sekuritas. Model ini mengasumsikan bahawa return dari sekuritas ke-i tergantung
pada sebuah faktor yang mendasari, nilai yang diwakili oleh indeks, dalam
notasi matematika dinyatakan sebagai:
ri = ai + Bi.F + ui
ri = return sekuritas i
Bi = Beta dari sekuritas i
F = indeks (belum tentu indeks
pasar)
ui = error term
(walaupun selanjutnya markowitz
mengusulkan bahwa persamaan itu seharusnya tidak linier, karena ada faktor lain
yang mendasarinya)
Kemudian pada tahun 1963, William
Sharpe menguji persamaan tersebut sebagai penjelasan bagaimana return sekuritas
cenderung naik dan turun seiring dengan naik turunnya indeks umum pasar, secara
spesifik Sharpe menggunakan persamaan sebagai berikut:
rit = ai + Bi.rmt + uit
rit = return dari aset i pada
periode t
rmt = return dari indeks pasar pada
periode t
ai = komponen non-pasar dari return
aset i
Bi = rasio kovarian dari return aset
i dan return indeks pasar terhadap varians return indeks pasar
uit = zero mean random error term
Model ini disebut model pasar indeks
tunggal (single index market model) atau sering disebut market model.
Dilihat disini pada model markowitz,
indeks-nya belum tentu indeks pasar, tetapi pada market model digunakan indeks
pasar.
Aplikasi
CAPM
Model yang dikembangkan CAPM
menjelaskan bahwa tingkat return yang diharapkan adalah penjumlahan dari return
aset bebas risiko dan premium risiko. Premium risiko dihitung dari beta
dikalikan dengan premium risiko pasar yang diharapkan. Premium risiko pasar
sendiri dihitung dari tingkat return pasar yang diharapkan dikurangi dengan
tingkat return aset bebas risiko. Bentuk matematika CAPM
Rs = Rf + βs (Rm – Rf)
Rf biasanya didekati dengan tingkat
return suku bunga bank sentral, di Indonesia umumnya risk free aset didekati
dengan tingkat return suku bunga Bank Indonesia.
βs didekati dengan menghitung data
time series saham dengan data return pasarnya. Penjelasan mengenai cara
menghitung beta disertakan di bagian akhir artikel ini.
Rm didapatkan dengan meramalkan
return IHSG. Banyak mahasiswa yang bingung mendapatkan nilai Rm yang negatif,
biasanya mereka menghitung IHSG dengan cara memprediksi historisnya yaitu
dengan membandingkan return IHSG tahun x dengan return IHSG tahun x-1. Dari definisi
CAPM bahwa Rm adalah tingkat return pasar yang diharapkan, bukan tingkat return
pasar yang periode yang lalu. Untuk mendapatkan nilai Rm tentunya harus dapat
memprediksi berapa tingkat return IHSG yang diharapkan. Salah satu cara
memprediksi IHSG adalah dengan cara analisis faktor. Di sini anda harus
melakukan studi empiris, anda harus menentukan faktor-faktor yang mempengaruhi
IHSG, kemudian membuat persamaan regresi dari IHSG dan faktor yang
mempengaruhinya. Dan terakhir anda harus memprediksi nilai dari faktor
yang mempengaruhi IHSG untuk x periode yang anda tentukan. Cara lainnya adalah
menggunakan nilai IHSG dari hasil penelitian empiris dari peneliti lain.
Contoh
Aplikasi Menghitung Rs
Suatu sekuritas x yang mempunyai
Expected Return 0.27 (27% per tahun) dan nilai betanya 1.2, apakah sekuritas x
ini layak di beli atau tidak?
Rs = Rf + βs (Rm – Rf)
Rf = misal SBI 1 bulan saat ini
adalah 0.06 (6% per tahun)
Rm = misal return IHSG yang
diharapkan saat ini adalah 0.26 (26% per tahun, didapatkan dengan cara
memprediksi return)
βs = 1.2
Sehingga
Rs = 0.06 + 1.2 (0.26 – 0.06)
Rs = 0.06 + 1.2 (0.2)
Rs = 0.06 + 0.24
Rs = 0.3 (30%)
Rs = 0.06 + 1.2 (0.26 – 0.06)
Rs = 0.06 + 1.2 (0.2)
Rs = 0.06 + 0.24
Rs = 0.3 (30%)
Kesimpulan, dengan nilai beta 1.2,
apabila return yang diperoleh hanya 27%, maka harga sekuritas terlalu mahal,
karena return wajarnya adalah 30%
Contoh
cara menghitung Beta
Nilai β dapat dihitung sendiri menggunakan data time series
suatu saham/industri dan time series return suatu pasar (misalnya IHSG, NYSE,
dll),
Contoh perhitungan:
Return saham X dibandingkan dengan
pasar
tahun 1-return saham X = -0.05,
return pasar -0.12
tahun 2-return saham X = 0.05,
return pasar = 0.01
tahun 3-return saham X = 0.08,
return pasar = 0.06
tahun 4-return saham X = 0.15,
return pasar = 0.10
tahun 5-return saham X = 0.10,
return pasar = 0.05
Sehingga rata-rata return saham X
adalah 0.066
Menghitung deviasi return saham X
tahun 1 = -0.1160
tahun 2 = -0.0160
tahun 3 = 0.0140
tahun 4 = 0.0840
tahun 5 = 0.0340
Rata-rata return pasar adalah 0.02
sehingga deviasi return pasar:
tahun 1 = -0.14000
tahun 2 = -0.0100
tahun 3 = 0.0400
tahun 4 = 0.0800
tahun 5 = 0.0300
Kalikan masing masing deviasi return
saham dengan deviasi return pasar:
tahun 1 = -0.1160 x -0.14000 =
0.0162
tahun 2 = -0.0160 x -0.0100 = 0.0002
tahun 3 = 0.0140 x 0.0400 = 0.0006
tahun 4 = 0.0840 x 0.0800 = 0.0067
tahun 5 = 0.0340 x 0.0300 = 0.0010
Jumlah = 0.0247
Pangkat duakan deviasi return pasar
tahun 1 = -0.14000^2 = 0.0196
tahun 2 = -0.0100^2 = 0.0001
tahun 3 = 0.0400^2 = 0.0016
tahun 4 = 0.0800^2 = 0.0064
tahun 5 = 0.0300^2 = 0.0009
Jumlah = 0.0286
Sehingga Beta untuk saham X adalah
0.0247/0.0286 = 0.86
Tidak ada komentar:
Posting Komentar